

Australian Government Office of the Chief Scientist

AUSTRALIA'S STEM WORKFORCE

Science, Technology, Engineering and Mathematics

MARCH 2016

Australian Government Office of the Chief Scientist

AUSTRALIA'S STEM WORKFORCE

Science, Technology, Engineering and Mathematics

MARCH 2016

© Commonwealth of Australia 2016 ISBN 978 1 925092 76 9

Ownership of intellectual property rights

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia.

Creative Commons licence

Attribution CC BY NC

All material presented in this publication is provided under a Creative Commons Attribution Non-Commercial 3.0 Australia Licence, save for content supplied by third parties, logos, any material protected by trademark or otherwise noted in this publication and the Commonwealth Coat of Arms.

Creative Commons Attribution Non-Commercial 3.0 Australia Licence is a standard for licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from http://creativecommons.org/licenses/by-nc/3.0/au/legalcode.

Content contained herein should be attributed as Office of the Chief Scientist 2016, *Australia's STEM Workforce: Science, Technology, Engineering and Mathematics,* Australian Government, Canberra.

Disclaimer

The Australian Government as represented by the Office of the Chief Scientist within the Department of Industry, Innovation and Science has exercised due care and skill in the preparation and compilation of the information and data contained in this publication. This publication has been prepared using multiple sources of data. The analysis and findings presented here are subject to the limitations of the data used. The Australian Government accepts no responsibility for the accuracy and completeness of the content contained in this publication. Readers should rely on their own inquiries to independently confirm the information and comment on which they intend to act. This publication does not indicate commitment by the Australian Government to a particular course of action.

This publication is available online at www.chiefscientist.gov.au

Design and layout for this report was provided by GRi.D Communications, Canberra, Australia.

Printed and bound by Union Offset Printers

Images contained herein were purchased from istock unless otherwise attributed.

Contributors in alphabetical order

- Krisztian Baranyai
- Jennifer Bowles
- Samira Hassan
- Roslyn Prinsley
- Phillippa Smith
- Chris Walter

We thank Matthew Brown, Ian Chubb, Robin King, Barbara van Leeuwen and Leon Sterling for reviewing the content.

FOREWORD

As time moves on it becomes increasingly difficult to decide who is and isn't a 'STEM worker'. After all, how many of us rely on new technologies to manage all the tasks we've got to fit in a working day? How many of these technologies had we imagined when we made our year 12 subject choices? How might technologies we can't imagine now be part of our daily experience tomorrow?

There's no opting out from the forces of change. They're too powerful, too widely dispersed, too slippery to catch. But even if I had the choice, I wouldn't take it. I hope all Australians would say the same.

When I look to that future I see a world of opportunity for Australians with STEM training. I see a STEM-powered economy that Australians can forge, if we have the confidence and the capability combined.

So I look to this report as one important measure of the national potential.

Much of the analysis is based on the 2011 Census, which is the most comprehensive and detailed data set of this type available to date. It also establishes a valuable benchmark for comparison with Census data that will be collected in 2016. Once these data are available and analysed (in late 2018), the impact of reforms in the years from 2011 to 2016, such as the demand-driven higher education system, can be investigated.

For today, this STEM skills index will be a valuable resource for students, as well as an important evidence base for public policy.

The most striking finding in my mind is the range of occupations that people with STEM qualifications have pursued. We have people with physics doctorates working as financial analysts. We have chemistry graduates running farms and making wine. We have ICT graduates planning cities. There are no limits on

what a STEM graduate can do, and we shouldn't impose them.

Do we impose them? I suspect we do, perhaps particularly on women with the talent and passion for STEM. The pay gap between men and women revealed in this report is significant, it is longstanding and it is unacceptable. No clever country under-serves half its people.

And no clever country would encourage its most STEM-literate people to pursue only traditional research paths, in universities or public sector research agencies.

I know from my own experience that the opportunities rarely lie in the expected places. Our STEM community, and most of all our young people, should be given every encouragement to find new applications for their skills across the economy.

Our best future is a future that builds on technology, innovation, ideas and imagination. It is a future with STEM. And it is a future that is ours to build.

Alan Finkel AO Australia's Chief Scientist

KEY FACTS

TOTAL STEM WORKFORCE

STEM qualified population

16% of STEM qualified people are female

Unemployment rate

Growth of STEM vs non-STEM qualified population Between 2006 and 2011:

STEM UNIVERSITY GRADUATES

Industries and occupations

STEM graduates work across the economy in a wide variety of industries and largely as professionals (55%) and managers (18%).

Top six industries

(65% of STEM graduates)

25% Professional, Scientific and Technical Services 10% Manufacturing 10% Public Administration and Safety

10% Education and Training

6% Health Care and Social Assistance

5% Financial and Insurance Services

% of STEM graduates earning in the top income bracket (\$104 000 or above)

% of employed STEM graduates in the private sector

All STEM graduates

STEM PhDs

STEM PhD GRADUATES

Business ownership

10% of STEM PhDs owned a business compared to 23% of non-STEM PhDs.

A PhD can provide an earning premium

PhD earning multiplier

In every STEM field, higher proportions of PhDs earned in the top income bracket compared to bachelor graduates.

Source: Australian Bureau of Statistics, Australian Census of Population and Housing, 2006 and 2011.

CONTENTS

FOREWORD		iii
CHAPTER 1	INTRODUCTION	1
PART 1 AUST	RALIA'S STEM CAPABILITY	7
CHAPTER 2	DEMOGRAPHICS OF AUSTRALIA'S STEM-QUALIFIED POPULATION	9
CHAPTER 3	EMPLOYMENT STATUS OF AUSTRALIA'S STEM-QUALIFIED POPULATION	19
PART 2 PATHV	WAYS OF UNIVERSITY STEM GRADUATES IN AUSTRALIA	33
CHAPTER 4	STEM PATHWAYS: OVERVIEW	35
CHAPTER 5	STEM PATHWAYS: PHYSICS AND ASTRONOMY	59
CHAPTER 6	STEM PATHWAYS: CHEMICAL SCIENCES	69
CHAPTER 7	STEM PATHWAYS: EARTH SCIENCES	79
CHAPTER 8	STEM PATHWAYS: BIOLOGICAL SCIENCES	89
CHAPTER 9	STEM PATHWAYS: AGRICULTURAL SCIENCES	103
CHAPTER 10	STEM PATHWAYS: ENVIRONMENTAL STUDIES	115
CHAPTER 11	STEM PATHWAYS: INFORMATION TECHNOLOGY	125
CHAPTER 12	STEM PATHWAYS: ENGINEERING AND RELATED TECHNOLOGIES	135
CHAPTER 13	STEM PATHWAYS: MATHEMATICAL SCIENCES	147
CHAPTER 14	FUTURE DIRECTIONS	157
APPENDIXES		159
REFERENCES		203

TABLES

Table 1.1:	Direct economic impact of selected STEM fields	3
Table 1.2:	Terms used in this report to describe the STEM fields	5
Table 2.1:	Australian population with post-secondary qualifications, by field and level	11
Table 2.2:	Field of highest post-secondary qualification and percentage of total population, by state or territory of usual residence	15
Table 2.3:	Absolute change in post-secondary qualifications, by field and age group, 2006 to 2011	17
Table 3.1:	Unemployment rate, by state or territory of usual residence and field of highest post-secondary qualification	24
Table 3.2:	Sector of employment, by field of highest post-secondary qualification	27
Table 3.3:	Occupations of people with STEM qualifications, percentage by gender and level of highest post-secondary qualification	29
Table 4.1:	Number of individuals with qualifications at the bachelor level and above, by highest level of qualification and field	38

FIGURES

Figure 2.1:	Australian STEM-qualified population, by field and level	11
Figure 2.2:	Australian population with post-secondary qualifications, by field and level as a percentage of the total in each field	12
Figure 2.3:	Percentage change in the number of people living in Australia with post-secondary qualifications, by field, 2006 to 2011	12
Figure 2.4:	Gender distribution of post-secondary qualifications, by field and level	13
Figure 2.5:	Percentage change in the number of people living in Australia with post-secondary qualifications, by gender, field and level, 2006 to 2011	13
Figure 2.6:	Percentage change in post-secondary qualifications, by gender and field, 2006 to 2011	13
Figure 2.7:	Distribution of people with post-secondary qualifications across Australia, by field and state or territory of usual residence	14
Figure 2.8:	Percentage change in post-secondary qualifications, by field and state or territory of usual residence, 2006 to 2011	15
Figure 2.9:	Australian population with post-secondary qualifications, by field and country of birth	16
Figure 2.10:	Age profile by proportion of people in each age group, by field of highest post-secondary qualification	16
Figure 2.11:	Percentage change in STEM-qualified population, by field and age group, 2006 to 2011	17
Figure 3.1:	Percentage change (bars) and absolute change (data labels) in employed people by field, 2006 to 2011	21
Figure 3.2:	Percentage of employed people working full-time, by field, gender and level	21
Figure 3.3:	Unemployment rate, by field, 2006 and 2011	22
Figure 3.4:	Unemployment rate, by field, level of qualification and gender	23
Figure 3.5:	Unemployment rate, by field, age and gender	23
Figure 3.6:	Unemployment rate, by state or territory of usual residence and field of highest post-secondary qualification	24
Figure 3.7:	Unemployment rate of people living in Australia with post-secondary qualifications, by field and place of birth	25
Figure 3.8:	Unemployment rate of people living in Australia with post-secondary qualifications, by field, place of birth and date of arrival	26
Figure 3.9:	Industry sector of employment, by field	27
Figure 3.10:	Occupations of people with a VET level qualification, by field	28
Figure 3.11:	Occupations of people with a university level qualification, by field	28
Figure 3.12:	Business ownership, by field and level of qualification	29
Figure 3.13:	Personal income of people with VET level qualifications, by field	31
Figure 3.14:	Personal income of people with university level qualifications, by field	31
Figure 4.1:	Employment status of STEM graduates, by field	40

Figure 4.2:	Age distribution of employed male graduates, by field	41
Figure 4.3:	Age distribution of employed female graduates, by field	41
Figure 4.4:	Skewness of the age distribution pattern of male STEM graduates, by field	42
Figure 4.5:	Skewness of the age distribution pattern of female STEM graduates, by field	42
Figure 4.6:	Percentage of graduates in the workforce with doctorates, by field	43
Figure 4.7:	Percentage of graduates employed in the private sector, by field	44
Figure 4.8:	Percentage of doctorates employed in the private sector, by field	44
Figure 4.9:	Top three industry divisions for graduate employment, by field	45
Figure 4.10:	Percentage of females in each industry division, by field of qualification	47
Figure 4.11:	Percentage of females with Science qualifications in each industry division, by field	48
Figure 4.12:	Business ownership amongst employed graduates with qualifications at the bachelor level or above, by field	49
Figure 4.13:	Percentage of graduates who were business owners employing more than 20 individuals, by field	49
Figure 4.14:	Top three unit group level occupations, by field	50
Figure 4.15:	Percentage of STEM graduates earning above \$104 000, by level and field	51
Figure 4.16:	Percentage of graduates with a personal income above \$104 000, by gender and field	52
Figure 4.17:	Percentage of bachelor level STEM graduates working full-time who earned greater than \$104 000 annually, by age group and gender	53
Figure 4.18:	Percentage of doctorate level STEM graduates working full-time who earned greater than \$104 000 annually, by age group and gender	54
Figure 4.19:	Percentage of bachelor level STEM graduates working part-time who earned greater than \$104 000 annually, by age group and gender	55
Figure 4.20:	Percentage of doctorate level STEM graduates working part-time who earned greater than \$104 000 annually, by age group and gender	55
Figure 4.21:	Percentage of bachelor graduates earning above \$104 000, by age group, field, gender and number of children	57
Figure 4.22:	Percentage of doctorate graduates earning above \$104 000, by age group, field, gender and number of children	57
Figure 5.1:	Age distribution of employed graduates with qualifications at bachelor level and above, by field and gender	61
Figure 5.2:	Top ten industry divisions of employment for Physics and Astronomy graduates with qualifications at bachelor level and above, by gender	62
Figure 5.3:	Top ten industry divisions of employment for Physics and Astronomy doctoral graduates, by gender	62
Figure 5.4:	Top ten industry classes of employment of Physics and Astronomy graduates with qualifications at bachelor level and above, by gender	63
Figure 5.5:	Top ten industry classes of employment of Physics and Astronomy doctoral graduates, by gender	63

Figure 5.6:	Top ten sub-major group level of occupations of Physics and Astronomy graduates with qualifications at bachelor level and above, by gender	64
Figure 5.7:	Top ten unit group level occupations of Physics and Astronomy graduates with qualifications at bachelor level and above, by gender	64
Figure 5.8:	Top ten unit group level occupations of Physics and Astronomy doctoral graduates, by gender	65
Figure 5.9:	Personal annual income of graduates, by field and level of qualification	65
Figure 5.10:	Personal annual income of Physics and Astronomy graduates working full-time and part-time, by field, gender and level of qualification	66
Figure 5.11:	Percentage of bachelor level graduates earning greater than \$104 000 annually, by field, age group and gender	67
Figure 5.12:	Percentage of doctoral level graduates earning greater than \$104 000 annually, by field, age group and gender	67
Figure 6.1:	Age distribution of employed graduates with qualifications at bachelor level and above, by field and gender	71
Figure 6.2:	Top ten industry divisions of employment for Chemical Sciences graduates with qualifications at bachelor level and above, by gender	72
Figure 6.3:	Top ten industry divisions of employment for Chemical Sciences doctoral graduates, by gender	72
Figure 6.4:	Top ten industry classes of employment for Chemical Sciences graduates with qualifications at bachelor level and above, by gender	73
Figure 6.5:	Top ten industry classes of employment for Chemical Sciences doctoral graduates, by gender	73
Figure 6.6:	Top ten unit group level occupations of Chemical Sciences graduates with qualifications at bachelor level and above, by gender	74
Figure 6.7:	Top ten unit group level occupations of Chemical Sciences doctoral graduates, by gender	74
Figure 6.8:	Personal annual income of graduates, by field and level of qualification	75
Figure 6.9:	Personal annual income of Chemical Sciences graduates working full-time and part-time, gender and level of qualification	76
Figure 6.10:	Percentage of bachelor level graduates earning greater than \$104 000 annually, by field, gender and age group	77
Figure 6.11:	Percentage of doctoral level graduates earning greater than \$104 000 annually, by field, gender and age group	77
Figure 7.1:	Age distribution of employed graduates with qualifications at bachelor level and above, by field and gender	81
Figure 7.2:	Top ten industry divisions of employment for Earth Sciences graduates with qualifications at bachelor level and above, by gender	82
Figure 7.3:	Top ten industry divisions of employment for Earth Sciences doctoral graduates, by gender	82
Figure 7.4:	Top ten industry classes of employment for Earth Sciences graduates with qualifications at bachelor level and above, by gender	83
Figure 7.5:	Top ten industry classes of employment for Earth Sciences doctoral graduates, by gender	83

Figure 7.6:	Top ten sub-major group level occupations of Earth Sciences graduates at bachelor level and above, by gender	84
Figure 7.7:	Top ten sub-major group level occupations of Earth Sciences doctorate graduates, by gender	84
Figure 7.8:	Top ten unit group level occupations of Earth Sciences graduates with qualifications at bachelor level and above, by gender	85
Figure 7.9:	Top ten unit group level occupations of Earth Sciences doctorate graduates, by gender	85
Figure 7.10:	Personal annual income of graduates, by field and level of qualification	86
Figure 7.11:	Personal annual income of Earth Sciences graduates working full-time and part-time, by field, gender and level of qualification	86
Figure 7.12:	Percentage of bachelor level graduates earning greater than \$104 000 annually, by field, gender and age group	87
Figure 7.13:	Percentage of doctoral level graduates earning greater than \$104 000 annually, by field, gender and age group	87
Figure 8.1:	Age distribution of employed Biological Sciences graduates at bachelor level and above, by field and gender	91
Figure 8.2:	Top ten industry divisions of employment for Biological Sciences graduates with qualifications at bachelor level and above, by gender	92
Figure 8.3:	Top ten industry divisions of employment for Biological Sciences doctoral graduates, by gender	92
Figure 8.4:	Top ten industry classes of employment for Biological Sciences graduates with qualifications at bachelor level and above, by gender	93
Figure 8.5:	Top ten industry classes of employment for Biological Sciences doctoral graduates, by gender	93
Figure 8.6:	Top ten unit group level occupations of Biological Sciences graduates with qualifications at bachelor level and above, by gender	94
Figure 8.7:	Top ten unit group level occupations of Biological Sciences doctoral graduates, by gender	94
Figure 8.8:	Personal annual income of graduates, by field and level of qualification	95
Figure 8.9:	Personal annual income of Biological Sciences graduates working full-time and part-time, by field, gender and level of qualification	96
Figure 8.10:	Percentage of bachelor level graduates earning greater than \$104 000 annually, by field, gender and age group	97
Figure 8.11:	Percentage of doctoral level graduates earning greater than \$104 000 annually, by field, gender and age group	97
Figure 8.12:	Age distribution of employed Medical Science graduates with qualifications at bachelor level and above, by field and gender	98
Figure 8.13:	Top five industry subdivisions employing Medical Science graduates, by gender	98
Figure 8.14:	Top five sub-major group occupations of Medical Science graduates, by gender	99
Figure 8.15:	Personal annual income of graduates, by field and level of qualification	99

Figure 8.16:	Age distribution of employed Food Science and Biotechnology graduates with qualifications at bachelor level and above, by field and gender	100
Figure 8.17:	Top five industry subdivisions employing Food Science and Biotechnology graduates, by gender	100
Figure 8.18:	Top five sub-major group occupations of Food Science and Biotechnology graduates, by gender	101
Figure 8.19:	Personal annual income of graduates, by field and level of qualification	101
Figure 9.1:	Age distribution of employed Agricultural Sciences graduates at bachelor level and above, by field and gender	105
Figure 9.2:	Top ten industry divisions of employment for Agricultural Sciences graduates with qualifications at bachelor level and above, by gender	106
Figure 9.3:	Top ten industry divisions of employment for Agricultural Sciences doctoral graduates, by gender	106
Figure 9.4:	Top ten industry classes of employment for Agricultural Sciences graduates with qualifications at bachelor level and above, by gender	107
Figure 9.5:	Top ten industry classes of employment for Agricultural Sciences doctoral graduates, by gender	107
Figure 9.6:	Top ten unit group level occupations of Agricultural Sciences graduates with qualifications at bachelor level and above, by gender	108
Figure 9.7:	Top ten unit group level occupations of Agricultural Sciences doctoral graduates, by gender	108
Figure 9.8:	Personal annual income of graduates, by field and level of qualification	109
Figure 9.9:	Personal annual income of Agricultural Sciences graduates working full-time and part-time, by gender and level of qualification	109
Figure 9.10:	Percentage of bachelor level graduates earning greater than \$104 000 annually, by field, gender and age group	110
Figure 9.11:	Percentage of doctoral level graduates earning greater than \$104 000 annually, by field, gender and age group	111
Figure 9.12:	Most common industry sub-division of employment for Fisheries Studies graduates at bachelor level and above, by gender	112
Figure 9.13:	Most common sub-major occupations of Fisheries Studies graduates at bachelor level and above, by gender	112
Figure 9.14:	Most common industry sub-division of employment for Forestry Studies graduates at bachelor level and above, by gender	113
Figure 9.15:	Most common sub-major occupations of Forestry Studies graduates at bachelor level and above, by gender	113
Figure 10.1:	Age distribution of employed Environmental Studies graduates at bachelor level and above, by field and gender	117
Figure 10.2:	Top ten industry divisions of employment for Environmental Studies graduates with qualifications at bachelor level and above, by gender	118
Figure 10.3:	Top ten industry divisions of employment for Environmental Studies doctoral graduates, by gender	118
Figure 10.4:	Top ten industry classes of employment for Environmental Studies graduates with qualifications at bachelor level and above, by gender	119

Figure 10.5:	Top ten industry classes of employment for Environmental Studies doctoral graduates, by gender	119
Figure 10.6:	Top ten unit group level occupations of Environmental Studies graduates with qualifications at bachelor level and above, by gender	120
Figure 10.7:	Top ten unit group level occupations of Agricultural Science doctoral graduates, by gender	120
Figure 10.8:	Personal annual income of graduates, by field and level of qualification	121
Figure 10.9:	Personal annual income of Environmental Studies graduates working full-time and part-time, by gender and level of qualification	121
Figure 10.10:	Percentage of bachelor level graduates earning greater than \$104 000 annually, by field, gender and age group	122
Figure 10.11:	Percentage of doctoral level graduates earning greater than \$104 000 anually, by field, gender and age group	122
Figure 11.1:	Age distribution of employed Information Technology graduates at bachelor level and above, by field and gender	127
Figure 11.2:	Top ten industry divisions of employment for Information Technology graduates with qualifications at bachelor level and above, by gender	128
Figure 11.3:	Top ten industry divisions of employment for Information Technology doctoral graduates, by gender	128
Figure 11.4:	Top ten industry classes of employment for Information Technology graduates with qualifications at bachelor level and above, by gender	129
Figure 11.5:	Top ten industry classes of employment for Information Technology doctoral graduates, by gender	129
Figure 11.6:	Top ten sub-major group occupations of Information Technology graduates at bachelor level and above, by gender	130
Figure 11.7:	Top ten sub-major group occupations of Information Technology doctorate graduates, by gender	130
Figure 11.8:	Top ten unit group level occupations of Information Technology graduates with qualifications at bachelor level and above, by gender	131
Figure 11.9:	Top ten unit group level occupations of Information Technology doctorate graduates, by gender	131
Figure 11.10:	Personal annual income of graduates, by field and level of qualification	132
Figure 11.11:	Personal annual income of Information Technology graduates working full-time and part-time, by gender and level of qualification	132
Figure 11.12:	Percentage of bachelor level graduates earning greater than \$104 000 annually, by gender, field and age group	133
Figure 11.13:	Percentage of doctoral level graduates earning greater than \$104 000 annually, by gender, field and age group	133
Figure 12.1:	Age distribution of employed Engineering and Related Technologies graduates at bachelor level and above, by field and gender	137
Figure 12.2:	Top ten industry divisions of employment for Engineering and Related Technologies graduates with qualifications at bachelor level and above, by gender	138
Figure 12.3:	Top ten industry divisions of employment for Engineering and Related Technologies doctoral graduates, by gender	138

Figure 12.4:	Top ten industry classes of employment for Engineering and Related Technologies graduates with qualifications at bachelor level and above, by gender	139
Figure 12.5:	Top ten industry classes of employment for Engineering and Related Technologies doctoral graduates, by gender	139
Figure 12.6:	Top ten sub-major group occupations for Engineering and Related Technologies graduates at bachelor level and above, by gender	141
Figure 12.7:	Top ten sub-major group occupations for Engineering and Related Technologies doctoral graduates, by gender	141
Figure 12.8:	Top ten unit group level occupations for Engineering and Related Technologies graduates with qualifications at bachelor level and above, by gender	142
Figure 12.9:	Top ten unit group level occupations for Engineering and Related Technologies doctorate graduates, by gender	142
Figure 12.10:	Personal annual income of graduates, by field and level of qualification	143
Figure 12.11:	Personal annual income of Engineering and Related Technologies graduates working full-time and part-time, by gender and level of qualification	143
Figure 12.12:	Percentage of bachelor level graduates earning greater than \$104 000 annually, by field, gender and age group	145
Figure 12.13:	Percentage of doctoral level graduates earning greater than \$104 000 annually, by field, gender and age group	145
Figure 13.1:	Age distribution of employed Mathematical Sciences graduates at bachelor level and above, by field and gender	149
Figure 13.2:	Top ten industry divisions of employment for Mathematical Sciences graduates with qualifications at bachelor level and above, by gender	150
Figure 13.3:	Top ten industry divisions of employment for Mathematical Sciences doctoral graduates, by gender	150
Figure 13.4:	Top ten industry classes of employment for Mathematical Sciences graduates with qualifications at bachelor level and above, by gender	151
Figure 13.5:	Top ten industry classes of employment for Mathematical Sciences doctoral graduates, by gender	151
Figure 13.6:	Top ten unit group level occupations for Mathematical Sciences graduates with qualifications at bachelor level and above, by gender	152
Figure 13.7:	Top ten unit group level occupations for Mathematical Sciences doctorate graduates, by gender	152
Figure 13.8:	Personal annual income of graduates, by field and level of qualification	153
Figure 13.9:	Personal annual income of Mathematical Sciences graduates working full-time and part-time, gender and level of qualification	154
Figure 13.10:	Percentage of bachelor level graduates earning greater than \$104 000 annually, by field, gender and age group	155
Figure 13.11:	Percentage of doctoral level graduates earning greater than \$104 000 annually, by field, gender and age groups	155