Australia's Chief Scientist

Occasional Paper Series Issue 1: Geoengineering

The Office of the Chief Scientist has launched the first report in its Occasional Paper Series, examining the risks and benefits of geoengineering to mitigate the effects of climate change. You can download a copy of the PDF by clicking here.

Reference list:

1 Lacis, A. A., et al. (2010), Atmospheric CO2: Principal Control Knob Governing Earth’s Temperature, Science, 330(6002), 356-359, doi: 10.1126/science.1190653.

2 Le Quéré, C., et al. (2009), Trends in the sources and sinks of carbon dioxide, Nature Geoscience, 2, 831-836, doi: 10.1038/ngeo689.

3 Peters, G. P., et al. (2012), Rapid growth in CO2 emissions after the 2008-2009 global financial crisis, Nature Climate Change, 2, 2-4, doi: 10.1038/nclimate1332.

4 Huber, M., and R. Knutti (2012), Anthropogenic and natural warming inferred from changes in Earth’s energy balance, Nature Geoscience, 5, 31-36, doi: 10.1038/ngeo1327.

5 Howard, W. R., et al. (2008), CO2 Emissions and Climate Change: Ocean Impacts and Adaptation Issues, 15 pp, Antarctic Climate & Ecosystems Cooperative Research Centre,Hobart,Tasmania.

6 Siegenthaler, U., et al. (2005), Stable Carbon Cycle-Climate Relationship During the Late Pleistocene, Science, 310(5752), 1313-1317, doi: 10.1126/science.1120130.

7 e.g. Rockstrom, J., et al. (2009), A safe operating space for humanity, Nature, 461(7263), 472-475, doi: 10.1038/461472a.

8 Task Force on Climate Remediation Research (2011), Geoengineering: A National Strategic Plan for Research on the Potential Effectiveness, Feasibility, and Consequences of Climate Remediation Technologies, 33 pp,Bipartisan Policy Center,Washington, DC.

9 Royal Society (2009), Geoengineering the Climate: Science, Governance and Uncertainty,London: Science Policy Centre of The Royal Society, 98 pp.,

10 Boyd, P. W. (2008), Ranking geo-engineering schemes, Nature Geosci, 1(11), 722-724, doi: 10.1038/ngeo348.

11 Read, D., et al. (2001), The role of land carbon sinks in mitigating global climate change, 27 pp, Royal Society,London.

12 Archer, D., et al. (2009), Atmospheric lifetime of fossil fuel carbon dioxide, Annual Review of Earth and Planetary Sciences, 37(1), 117-134, doi: 10.1146/

13 Chisholm, S. W. (2000), Oceanography: Stirring times in the Southern Ocean, Nature, 407(6805), 685-687, doi: 10.1038/35037696.

14 Boyd, P. W. (2008), Implications of large-scale iron fertilization of the oceans, Marine Ecology Progress Series, 364, 213-218, doi: 10.3354/meps07541.

15 Buesseler, K. O., et al. (2008), Ocean Iron Fertilization–Moving Forward in a Sea of Uncertainty, Science, 319(5860), 162, doi: 10.1126/science.1154305.

16 Wallace, D., et al. (2010), Ocean Fertilization: A Scientific Summary for Policy Makers, IOC/UNESCO,Paris.

17 Boyd, P. W. (2002), Environmental factors controlling phytoplankton processes in the Southern Ocean, Journal of Phycology, 38(5), 844-861, doi: 10.1046/j.1529-8817.2002.t01-1-01203.x.

18 Boyd, P. W., et al. (2007), Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions, Science, 315(5812), 612-617, doi: 10.1126/science.1131669.

19 Gnanadesikan, A., and I. Marinov (2008), Export is not enough: nutrient cycling and carbon sequestration, Marine Ecology Progress Series, 364, 289-294, doi: 10.3354/meps07550.

20 Peng, T.-H., and W. S. Broecker (1991), Dynamical limitations on the Antarctic iron fertilization strategy, Nature 349, 227-229, doi: 10.1038/349227a0

21 Matear, R. J., and B. Elliott (2004), Enhancement of oceanic uptake of anthropogenic CO2 by macronutrient fertilization, Journal of Geophysical Research, 109(C4), C04001, doi: 10.1029/2000jc000321.

22 Lampitt, R. S., et al. (2008), Ocean fertilization: a potential means of geoengineering?, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1882), 3919-3945, doi: 10.1098/rsta.2008.0139.

23 Kirchner, I., et al. (1999), Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption, J. Geophys. Res., 104(D16), 19039-19055, doi: 10.1029/1999jd900213.

24 Crutzen, P. (2006), Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?, Climatic Change, 77(3), 211-220, doi: 10.1007/s10584-006-9101-y.

25 Morton, O. (2007), Climate change: Is this what it takes to save the world?, Nature, 447(7141), 132-136, doi: 10.1038/447132a.

26 The “SPICE” Project is a UK feasibility study funded by the NERC:

27 Trenberth, K. E., and A. Dai (2007), Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering, Geophysical Research Letters, 34(15), doi: 10.1029/2007gl030524.

28 Andreae, M. O., et al. (2005), Strong present-day aerosol cooling implies a hot future, Nature, 435(7046), 1187-1190, doi: 10.1038/nature03671.

29 Kravitz, B., et al. (2009), Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols, J. Geophys. Res., 114(D14), D14109, doi: 10.1029/2009jd011918.

30 Robock, A., et al. (2009), Benefits, risks, and costs of stratospheric geoengineering, Geophysical Research Letters, 36(19), L19703, doi: 10.1029/2009gl039209.

31 Conference of the Parties (2010), Decision X/33: Biodiversity and climate change, 9 pp, United Nations Environment Program Convention on Biological Diversity,Nagoya.

32 Resolution on developing a common EU position ahead of the United Nations Conference on Sustainable Development (Rio+20), 20/9/2011,

33 Resolution LC-LP.1 (2008) on the Regulation of Ocean Fertilization, International Maritime Organisation,London.